ABSTRACT: Fentanyl and its analogues are commonly known as synthetic opiates. Fentanyl was synthesised in Belgium in the late 1950’s and was introduced into medical practice in 1963. This compound has 75 to 125 times more analgesic potency than morphine. Thereafter, other fentanyl analogues were introduced: sufentanyl, which is about 5–10 times as potent as fentanyl, alfentanil – an ultra-short acting analgesic, remifentanil, which is used widely for short-term anaesthesia. The biological effects of fentanyls are indistinguishable from those of heroin. Therefore this group of compounds is very attractive to clandestine manufacturers. The first illicit use of fentanyl and its analogues occurred in the mid-1970s. Fentanyl-related compounds are highly potent synthetic narcotic analgesics. Because of the high potency of fentanyls, low doses are used. The low doses lead to very low concentrations of these substances and their metabolites in biological material. Hence, their determination appears very difficult. In consequence, very sensitive techniques are applied to determine fentanyl analogues at nanograms concentrations in a complex biological matrix.

KEY WORDS: Reviews; Fentanyl and its analogues; Medical and nonmedical use; Methods of determination.

INTRODUCTION

Fentanyl and its analogues are commonly known as synthetic opiates. Most of these substances show powerful analgesic activity. Some compounds from the fentanyl group are used as anaesthetics. Unfortunately, fentanyls are increasingly frequently abused as heroin substitutes, especially in the United States.

Fentanyl was synthesised for the first time in Belgium in the late 1950’s. In the 1960’s it was introduced onto the market as an intravenous anaesthetic agent with an analgesic potency about 75–125 times that of morphine. The chemical structure of fentanyl allows manufacturers to create a great
number of variations, which possess powerful analgesic properties [12, 18, 28, 29]. Out of approximately 1400 fentanyl analogues, more than 200 compounds have been described in the literature [5, 41]. However, only for several substances have the effects on the human organism been studied and described.

We have used the standard common names for fentanyl and its analogues throughout this paper. In the literature, two variants of the suffix: -yl and -il are used commonly – we have used -yl.

NONMEDICAL USE OF FENTANYL AND ITS ANALOGUES

Fentanyls are a large group of synthetic analgesic narcotic compounds. In view of the effects induced by their action, fentanyls are very “attractive” on the narcotics market.

First mentions of the illicit use of fentanyls in the medical community (due to easy access) appeared in the mid-1970’s. Numerous opioid derivatives of fentanyl are sold on the street as synthetic heroin or China White. The following analogues of fentanyl, amongst others, are available under the name China White: α-methylfentanyl (illegal trade was noted for the first time in 1979), para-fluorofentanyl (1981), benzylfentanyl (1981), acetyl-α-methylfentanyl (1983), acryl-α-methylfentanyl (1983), 3-methylfentanyl (1983), thiophenylfentanyl (1985) [9, 15, 41]. According to studies by Janssen Pharmaceutical Company, the cis-isomer of 3-methylfentanyl is approximately 6000 times as potent as morphine, whereas the trans-isomer is approximately 500 times as potent. Fentanyls distributed on the narcotics market are adulterated with large amounts of lactose or mannitol, so the amount of active ingredients is very small, usually less than 1%. Powdered samples may be white in colour (generally, these are sold as Persian White), light brown (China White, synthetic heroin or fentanyl) or dark brown (Mexican Brown) [15]. These substances are most often injected, but smoking or snorting are becoming increasingly common. The effects of fentanyl are indistinguishable from the effects induced by nasal inhalation of “street heroin”. Snorting of fentanyl at a dose of 0.5 mg gives similar euphoric effects to heroin at a dose of 20 mg. Fentanyls differ from heroin in potency and duration of action. They may have as much as hundreds of times more potency than heroin. However, their duration of action is short, generally 30 to 90 minutes, in other words, much shorter than heroin (about 4 h) [20, 44, 46].

The estimated fatal intravenous dose of fentanyl is 2 μg, p-fluorofentanyl: 250 μg, α-methylfentanyl: 125 μg and 3-methylfentanyl – about 20 μg [40].
Amongst the most dangerous effects of the action of fentanyl are induced sudden respiratory depression and even death. The intensity and duration of respiratory depression depend on the kind of fentanyl analogue and administered dose. In some cases death has occurred so quickly, that abusers were found with a needle still in the site of injection (in situ) [16, 44]. Well-documented sudden fentanyl-related deaths show that victims were young (mean age 30, range 18 to 50) and found at home (usually in the bathroom or bedroom) [15, 25].

According to various sources, post-mortem blood fentanyl concentrations ranged from 2 to 100 ng/ml (average 18 ng/ml) [37], but very low concentrations of 0.2–50 ng/ml with average 3 ng/ml were also noted in a large series of intravenous abuse fatalities [16].

Moreover, the following tissue concentrations were noted in 7 adults who died after self-administered intravenous injections of fentanyl (for non-medical purposes): blood – range 3.0–28 (average 8.3) ng/ml; brain – 9.2–30 (20) ng/g; liver – 5.9–78 (37) ng/g; kidney – 6.1–42 (18) ng/g and urine – 5.0–93 (28) ng/ml [3].

In the United States, fentanyl and its analogues are categorised as Schedule II controlled substances. In Poland, these substances are listed in the I-N group of the Drug Addiction Counteraction Act of 24 April 1997.

MEDICAL APPLICATION OF FENTANYL AND ITS ANALOGUES

The development of synthetic opioid analgesics, i.e. fentanyl, sufentanyl, alfentanil and remifentanyl (Table I) was a very important step in anaesthetic procedure (management). These substances, when administered intravenously, begin to act quickly, in just 30–50 seconds and they have potent analgesic activity. The duration of action of fentanyl is relatively short due to rapid redistribution of the drug to tissues. Fentanyl and its analogues also show weak sedative action. One of the most important unwanted effects is respiratory depression, which leads to apnoea, depending on dose. Muscular rigidity, dizziness, somnolence, nausea and vomiting may also occur. Monitoring of respiratory activity and the cardiovascular system (arterial blood pressure) is necessary after administration of fentanyl. The general characteristics of fentanyl are summarised in Table II [32, 45, 47].

FENTANYL

In 1963 fentanyl was introduced into clinical use as an additive to surgical anaesthetic mixtures and for mitigation of postoperative pain.
TABLE I. STRUCTURAL FORMULA AND CHEMICAL NAME OF FENTANYL AND ITS THREE ANALOGUES

<table>
<thead>
<tr>
<th>Structural formula</th>
<th>Chemical name</th>
<th>Common name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-(2-phenethyl)-4-N(N-propionyl-anilino)piperidine; N-fenyl-N[1-(2-phenyl-ethyl)-4-piperidinyl]propanamide</td>
<td>Fentanyl</td>
</tr>
<tr>
<td></td>
<td>{4-Methoxymethyl-1-[2-(2-thienyl)ethyl]-4-piperidinyl}-N-phenylpropanamide; N-[4-(meth-oxymethyl)-1-[2-(2-thienyl)ethyl]-4-piperidinyl]-N-phenylpropanamide</td>
<td>Sufentanyl</td>
</tr>
<tr>
<td></td>
<td>N-[1-[2-(4-ethyl-4,5-dihydro-5-oxo-1H-tetrazol-1-yl)-ethyl]-4-methoxymethyl]4-piperidinyl]-N-propanamide</td>
<td>Alfentanyl</td>
</tr>
<tr>
<td></td>
<td>Methyl-3-[4-methoxycarbonyl-4-[(1-oxopropyl)-phenylamino]-1-piperidine]-propanoate</td>
<td>Remifentany</td>
</tr>
</tbody>
</table>

TABLE II. COMPARISON OF SELECTED PROPERTIES OF FENTANYL AND ITS THREE ANALOGUES WITH MORPHINE AND HEROIN [32, 45, 47]

<table>
<thead>
<tr>
<th>Drug</th>
<th>Potency of analgesic action</th>
<th>Biological half-life</th>
<th>Volume of distribution [l/kg]</th>
<th>Therapeutic concentration [ng/ml]</th>
<th>Initial dose [µg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine</td>
<td>1</td>
<td>2–4 h</td>
<td>3.2</td>
<td>10–100</td>
<td>2–10 mg (orally)</td>
</tr>
<tr>
<td>Heroin</td>
<td>10</td>
<td>2–6 min</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Alfentanly</td>
<td>40</td>
<td>0.6–2.3 h</td>
<td>0.9</td>
<td>30–600</td>
<td>125</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>75–125</td>
<td>1–3.5 h</td>
<td>3.7–4.1</td>
<td>3–300</td>
<td>150–300</td>
</tr>
<tr>
<td>Sufentanyl</td>
<td>500–1000</td>
<td>2–5 h</td>
<td>2.48</td>
<td>0.5–10</td>
<td>0.25–25</td>
</tr>
<tr>
<td>Remifentanly</td>
<td>–</td>
<td>6–16 min</td>
<td>0.2–0.4</td>
<td>3–50</td>
<td>1</td>
</tr>
</tbody>
</table>

Fentanyl administered intravenously begins to act after only 30 seconds. Its analgesic action, which is stronger and more rapid than morphine, is caused by better solubility in lipids and easier penetration across the blood-brain barrier. The short duration of action of a single dose, on the other hand, is caused by rapid redistribution to muscles, fatty tissue and lung. Repeating doses or continuous infusion leads to gradual saturation of tissues, so the concentration of fentanyl in plasma does not decrease suddenly.
Studies have shown that there is a good correlation between pharmacological action and concentration of fentanyl in plasma. And so, postoperative analgesia occurs at fentanyl concentration of 0.63 ±0.25 ng/ml, respiratory depression at 1–5 ng/ml, changes in EEG at 6.9 ±1.5 ng/ml, loss of consciousness at 34 ±7 ng/ml, blocking of the response of the circulatory system (cardiovascular system) to intubation – 102 ±50 ng/ml [2, 32].

84% of fentanyl is bound to plasma proteins. It is metabolised intensively in the liver, excreted in the bile and urine unchanged and as inactive metabolites (e.g. norfentanyl). After 72 h, 85% of a single dose appears in the urine and faeces as inactive metabolites. Only 8% of a single dose is excreted in the urine as unchanged drug [32].

FENTANYL ANALOGUES

Sufentanyl is a strongly acting opioid drug. It is very highly soluble in lipids, which causes rapid distribution to body tissues. Sufentanyl is a 5 to 10 times more potent analgesic than fentanyl and 500 to 1000 times more than morphine. The effects of its action occur faster than after administration of fentanyl but they probably last shorter [32].

Alfentanyl is used intravenously to induce general anaesthesia and as a component of drug mixtures used for this purpose. In cardioanesthesia, alfentanyl is administered in relatively large doses (as the only anaesthetic) [32]. Alfentanyl is characterised by very rapid analgesic onset and an ultra short duration of analgesic action (three times shorter than fentanyl). Its action is 40 times more potent than morphine. Alfentanyl can cause severe respiratory depression, which occurs at concentration in serum higher than 100–200 ng/ml and coma [3].

Sufentanyl and alfentanyl were first synthesised in the mid 1970s. Now they are widely used to provide potent analgesia.

Remifentenyl has been employed as an auxiliary analgesic drug and as one of the components of drug mixes given to induce general anaesthesia since 1993 [3]. Its biological half-life after therapeutic dose is 3–10 minutes and opioid activity disappears in 5–10 minutes after administration has been finished. Remifentenyl is designed only for intravenous injection. It must be administered as a constant infusion by means of a calibrated infusion pump [32].

In humans, sufentanyl, alfentanyl and remifentenyl are intensively metabolised and only a few percent of the given dose are excreted in the urine as unchanged drug. Metabolites of fentanyl analogues (norsufentanyl, nor-alfentanyl) seem to be pharmacologically inactive.
<table>
<thead>
<tr>
<th>Substance</th>
<th>Specimen type</th>
<th>Extraction details</th>
<th>Analytical method details</th>
<th>Mobile phase or carrier gas</th>
<th>Validation data: LOD [ng/ml]; LOQ [ng/ml]; Rec. [%]</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fentanyl I. S.: papaverine</td>
<td>Plasma</td>
<td>LLE: NaOH (10 M), 5% isopropanol in n-butyl chloride</td>
<td>GC/NPD</td>
<td>Helium</td>
<td>0.1; 0.5; –</td>
<td>[7]</td>
</tr>
<tr>
<td>Remifentanyl I. S.: fentanyl</td>
<td>Blood</td>
<td>LLE: n-butyl chloride</td>
<td>GC/NPD</td>
<td>Helium</td>
<td>– ; 0.2; 80</td>
<td>[6]</td>
</tr>
<tr>
<td>Fentanyl I. S.: sufentanyl</td>
<td>Serum</td>
<td>LLE: NaOH (1 M), dichloromethane with 0.5 M TEA</td>
<td>GC/MS</td>
<td>Helium</td>
<td>– ; 0.05; –</td>
<td>[39]</td>
</tr>
<tr>
<td>Fentanyl Sufentanyl</td>
<td>Urine</td>
<td>LLE: Extrelut® NT1 SPE, Merck</td>
<td>GC/MS</td>
<td>Helium</td>
<td>Fentanyl, sufentanyl: – ; < 0.005; –</td>
<td>[42]</td>
</tr>
<tr>
<td>Alfentanyl I. S.: Fentanyl-d5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Alfentanyl: – ; < 0.01; –</td>
<td></td>
</tr>
<tr>
<td>Fentanyl</td>
<td>Blood</td>
<td>LLE: n-butyl chloride-ether (3:1, v/v), H2SO4 (0.5 M); Reextraction: NH4OH, methylene chloride</td>
<td>GC/MS</td>
<td>Helium</td>
<td>0.5; –; –</td>
<td>[37]</td>
</tr>
<tr>
<td>Alfentanyl Fentanyl I. S.: papaverine</td>
<td>Plasma</td>
<td>LLE: NaOH (0.5 M), heptane-isomyl alcohol (98:2, v/v)</td>
<td>HPLC-UV-Vis (λ = 195 nm)</td>
<td>KH2PO4 (0.01 M, pH 2.8, 85% H3PO4), far-UV-HPLC-grade ACN (65:35, v/v)</td>
<td>Alfentanily: 0.25; 2; 86</td>
<td>[26]</td>
</tr>
<tr>
<td>Compounds</td>
<td>I. S.</td>
<td>Matrix</td>
<td>Extraction Method</td>
<td>LC/MS Conditions</td>
<td>LOD or LOQ</td>
<td>Ref.</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>--------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>flurazepam</td>
<td>Plasma</td>
<td>LLE: KOH (0.5 M), cyclohexane</td>
<td>HPLC-UV (λ = 200 nm)</td>
<td>0.02% perchloric acid (70%) in MeOH</td>
<td>–; 0.2; 100</td>
</tr>
<tr>
<td>Remifentanyl</td>
<td>GI 97559</td>
<td>Rat blood</td>
<td>LLE: phosphate buffer (1M, pH = 7.4), n-butyl chloride</td>
<td>HPLC-UV (λ = 210 nm) high-ligand-density RP C8 column (150 x 4.6; 5)</td>
<td>ACN, NaH2PO4 (0.05M) buffer (27:83, v/v)</td>
<td>–; 2.5; × 88</td>
</tr>
<tr>
<td>Remifentanyl</td>
<td>GI 97559</td>
<td>Dog plasma</td>
<td>SPE: Bond Elut phenyl cartridges (Varian)</td>
<td>HPLC-UV (λ = 210 nm) RP Spherisorb C1 column (150 x 4.6; 5)</td>
<td>ACN, MeOH, phosphate buffer, water (180:120:48:652, v/v/v/v/v)</td>
<td>0.5; 7.89; 100</td>
</tr>
<tr>
<td>Sufentanyl</td>
<td>fentanyl</td>
<td>Serum</td>
<td>LLE: NaOH (1 M), toluene-2-propanol (20:2, v/v)</td>
<td>HPLC-MS/MS (ESI) Machery-Nagel Nucleosil CC 100-5 C18 HD column (70 x 2)</td>
<td>0.02% TFA in water, ACN (85:15, v/v), gradient elution</td>
<td>3; 10; 75</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>fentanyl-d5</td>
<td>Plasma</td>
<td>LLE: NaOH (1 M) 2-propanol-toluene</td>
<td>LC/MS Zirchrom-PBD column (50 x 2.1; 3)</td>
<td>ACN, ammonium acetate (10 mM), citrate buffer (0.1 mM, pH = 4.4) (45:55, v/v)</td>
<td>Fentanyl: –; 0.025; 75–92 Norfentanyl: –; 0.05; 40–49</td>
</tr>
<tr>
<td>Remifentanyl</td>
<td>remifentanyl-d4</td>
<td>Blood</td>
<td>LLE: Phosphate buffer (0.1 M, pH = 7.4) dichloromethane</td>
<td>LC-MS/MS C18 column, Pecosphere, Perkin-Elmer (33 x 4.6)</td>
<td>ACN, chloroform (1:1, v/v) containing ammonium acetate (2 mmol/l)</td>
<td>–; 0.1; 76</td>
</tr>
<tr>
<td>Sufentanyl</td>
<td>Fentanyl</td>
<td>Plasma</td>
<td>SPE: C18, 200 mg, Baker</td>
<td>LC-MS/MS (API) Supelcosil LC-C18-DB column (300 x 1; 5)</td>
<td>ACN, water (80:20, v/v) containing 0.2% TFA</td>
<td>–; 0.3; 98.9</td>
</tr>
</tbody>
</table>

I. S. – internal standard; LLE – liquid-liquid extraction; SPE – solid phase extraction; LOD – limit of detection; LOQ – limit of quantification; Rec. – recovery; TEA – triethylamine; TFA – trifluoroacetic acid; ACN – acetonitrile; MeOH – methanol; RP – reverse phase.

GC column size: (length [m] x internal diameter [mm]; film thickness [µm]).

HPLC column size: (length [mm] x internal diameter [mm]; particle size [µm]).
REVIEW OF METHODS OF DETERMINATION OF FENTANYL AND ITS ANALOGUES IN BIOLOGICAL MATERIAL

As mentioned before, fentanyl and some of its analogues are commonly used in anaesthesiology. Unfortunately, fentanyls are also abused as interchangeable or substitute agents, especially for heroin. These substances can be as much as several dozen times more potent than heroin. Fentanyls, which are sold on the narcotics market as heroin, can be the cause of death of persons taking narcotics. Fentanyls abuse and their illegal sale have contributed to development of various methods for determination of these substances.

Among the most frequently applied methods for quantitative analysis of fentanyls are: enzyme-linked immunosorbent assay (ELISA) [35], radioimmunoassay (RIA) [1, 17, 43], radioreceptor assay (RRA) [1], chemiluminescence enzyme immunoassay [8], non-radioactive enzyme immunoassays (EIAs) [21], gas chromatography [1, 6, 7, 10, 13, 22, 30, 34, 36, 38, 39, 42, 43] and liquid chromatography [4, 11, 14, 19, 23, 24, 26, 27, 31, 33].

Fentanyls occur in biological material at very low concentrations, not higher than several nanograms per millilitre or per gram. Most compounds present in biological material at such low concentrations can not be detected by means of routinely used screening procedures. Therefore, analysis aimed at this group of compounds is needed. Table III provides a summary of methods of determining fentanyl and its analogues.

SUMMARY

Fentanyl and its analogues are commonly known as synthetic opiates. These compounds have very powerful and rapid analgesic onset. Some compounds from the fentanyl group are used as anaesthetics. Unfortunately, fentanyls are increasingly frequently abused as street drugs, especially as a heroin substitute.

Determination of fentanyl and its analogues in body fluids and tissues is very important for clinical and forensic toxicology purposes. Discussion of the pharmacology and toxicology of known fentanyl analogues may be helpful in the study of properties and detection of new fentanyl-related compounds.
References:

46. www.dea.gov/concern/fentanyl.html
47. www.roche.pl/lekarze/publikacje/sedacja_d/11.html
WSTĘP

Fentanyl i jego pochodne są nazywane potocznie syntetycznymi opiatami. Większość z tych substancji wykazuje bardzo silne działanie przeciwbólowe. Niektóre związki z grupy fentanyli są stosowane jako środki znieczulające, szczególnie w anestezjologii. Niestety bywają one coraz częściej nadużywane jako substancje odurzające, zwłaszcza w Stanach Zjednoczonych.

Fentanyl po raz pierwszy zsynetyzowano w Belgii pod koniec lat 50. dwudziestego wieku. W latach 60. zaczęto go stosować w medycynie jako dożylny środek znieczulający o właściwościach przeciwbólowych 75–125 razy silniejszych niż morfina. Struktura chemiczna fentanylu pozwala na otrzymywanie jego licznych pochodnych wykazujących również silne właściwości przeciwbólowe [12, 18, 28, 29]. Spośród ok. 1400 pochodnych fentanylu, ponad 200 związków opisano w pióremnictwie [5, 41]. Natomiast tylko dla kilku z nich zbadano i opisano efekty działania na organizm człowieka.

W niniejszej pracy zastosowano jednolite zwyczajowe nazwy fentanylu i jego pochodnych. W pióermnictwie czesto sufiks w nazwach zwyczajowych pisany jest przez -yl lub -il.

POZAMEDYCZNE STOSOWANIE FENTANYLU I JEGO POCHODNYCH

Ze względu na wywoływane efekty działania, fentanyl i jego pochodne są związkami budzącymi duże zainteresowanie, a zatem bardzo „atrakcyjnymi” na rynku narkotykowym. Pierwsze wzmianki o nielegalnym użyciu fentanyli w środowisku medycznym (ze względu na łatwy dostęp) pojawiły się w połowie lat 70. Liczne pochodne fentanylu często sprzedawane są pod nazwą syntetyczna heroina lub China White. Jako China White występują m.in. następujące analogi fentanylu: α-metyl-
fentanyl (po raz pierwszy jego nielegalny obrót odnotowano w roku 1979), parafluorofentanyl (1981), benzylfentanyl (1981), acetyl-α-metyl-
fentanyl (1983), akryl-α-metyl-
fentanyl (1983), 3-metyl-
fentanyl (1983) oraz thienylfentanyl (1985) [9, 15, 41]. Według badań farmaceutycznej firmy Janssen izomer cis-metyl-
fentanylu działa ok. 6000 razy silniej przeciwbólowo, natomiast izomer trans ok. 500 razy silniej niż morfina. Fentanyl rozprowadzane na rynku narkotykowym są rozcieńczane dużą ilością laktozy lub mannitolu, tak więc zawartość aktywnych składników jest bardzo niska, zazwyczaj mniejsza niż 1%. Próbki proszku mogą mieć barwę białą (takie najczęściej sprzedawane są pod nazwą Persian White), jasnobrązową (China White, synthetic heroin oraz fentanyl) lub ciemnobrązową (Mexican Brown) [15]. Substancje te są zwykle wstrzykiwane, ale palenie lub wciąganie przez nos staje się coraz
bardziej powszechne. Objawy działania fentanyli są nieodróżnialne od efektów wywoływanych przez „uliczną” heroinę wciągany przez nos. Wciąganie 0,5 mg fentanylu wywołuje podobne euforyzujące działanie, jak 20 mg heroiny. Różnica pomiędzy fentanylami a heroiną polega na tym, że fentanyle mogą wykazywać nawet 100 razy silniejsze działanie niż heroina. Jednak ich czas trwania działania jest krótki – zazwyczaj wynosi od 30 do 90 minut, czyli jest znacznie krótszy niż heroiny (ok. 4 h) [20, 44, 46].

Szacunkowo dożylna śmiertelna dawka fentanylu wynosi 2 mg, p-fluorofentanylu 250 μg, α-metylofentanylu 125 μg, a 3-metylofentanylu około 20 μg [40].

Do najbardziej niebezpiecznych efektów działania fentanyli należy wywoływanie nagłej depresji oddechowej, a nawet śmierci. Siła i czas trwania depresji oddechowej zależy od rodzaju i dawki spożytego fentanylu. W niektórych przypadkach zgon następuje tak szybko, że zazwyczaj szybko znajduje się z igłą w miejscu wklejania (in situ) [16, 44]. Opisy naglej zgonów związań z przedawkowaniem fentanyli wskazują, że ofiary były młode (w granicach od 18 do 50 lat, średni wiek ok. 30 lat), a do zjeścia śmiertelnego dochodziło w domu (zazwyczaj w sypialni lub łazience) [15, 25].

Według różnych źródeł, stężenia fentanylu wyznaczane we krwi sekcjowej ważyły się w granicach 2–100 ng/ml przy średnim stężeniu wynoszącym 18 ng/ml [37], ale notowano także bardzo niskie stężenia mieszczące się w granicach od 0,2 do 50 ng/ml; wówczas średnie stężenie wynosiło 3 ng/ml krwi [16]. Ponadto u siedmiu dorosłych, którzy zmarli po dożylnej iniekcji fentanylu w celach pozamedycznych, stężenia tego związku w materiale sekcjowym wynosiły: krew – 3,0–28 (średnia 8,3) ng/ml; mózg – 9,2–30 (20) ng/g; wątroba – 5,9–78 (37) ng/g; nerka – 6,1–42 (18) ng/g i mocz – 5,0–93 (28) ng/ml [3].

W Stanach Zjednoczonych fentanyl i jego analogi zostały zaliczone do grupy II substancji kontrolowanych. W Polsce ustawa z dnia 24 kwietnia 1997 r. o przeciwdziałaniu narkomanii zalicza fentanyl oraz jego analogi do grupy I-N środków odurzających.

LECZNICZE ZASTOSOWANIE FENTANYLU I JEGO POCHODNYCH

Rozwój syntezy opioidowych leków przeciwbólowych, tj. fentanylu, sufentanyl, alfentanyl i remifentanyl (tabela I) był ważnym krokiem w postępowaniu anestezjologicznym. Substancje te podane dożylnie zaczynają działać szybko, już po 30–50 s, i to z dużą siłą działania przeciwbólowego. Czas działania fentanyli jest relatywnie krótki z powodu szybkiej redystrybucji leku do tkanki. Substancje te wykazują także słabe działanie uspokajające. Do najbardziej istotnych efektów działania niepożądanej zależności od przeciwbólowego. Substancje te wykazują także słabe działanie uspokajające. Do najbardziej istotnych efektów działania niepożądanej zależności m.in. depresja oddechowa, prowadząca do bezdechu, która jest zależna od przyjętej dawki. Mogą także występować zesztywnienie mięśni, zawroty głowy, senność, nudności i wymioty. Po podaniu fentanyli konieczne jest monitorowanie czynności oddechowej oraz układu krążenia, czyli ciśnienia tętniczego krwi. Ogólną charakterystykę fentanyli przedstawiono w tabeli II [32, 45, 47].

FENTANYL

Fentanyl wprowadzono do stosowania klinicznego w 1963 roku jako dodatek do operacyjnych mieszanin znieczulających i łagodzenia bólu pooperacyjnego.
Fentanyl podany dożylnie zaczyna działać już po 30 s. Jego silniejsze i szybsze działanie przeciwbólowe niż morfiny jest wynikiem lepszej rozpuszczalności w lipidach i łatwiejszego przenikania przez barierę krew-mózg. Natomiast krótki okres działania pojedynczej dawki jest spowodowany szybką dystrybucją do mięśni, tkanki tłuszczowej oraz płuc. Powtarzanie dawek lub ciągły wlew prowadzi do stopniowego wysycenia tkanek, co powoduje, że stężenie w osoczu nie maleje raptownie. Badania wykazały istnienie dobrej korelacji pomiędzy działaniem farmakologicznym a stężeniem fentanylu w osoczu. I tak analgezja pooperacyjna występuje przy stężeniu 0,63 ± 0,25 ng/ml, depresja oddechowa – 1–5 ng/ml, zmiany w EEG – 6,9 ± 1,5 ng/ml, utrata przytomności – 34 ± 7 ng/ml, blokowanie odpowiedzi układu krążenia na intubację – 102 ± 50 ng/ml [2, 32].

Fentanyl w osoczu wiąże się w 84% z białkami. Ulega on intensywnemu metabolizmowi w wątrobie, a wydalany jest z żółcią i moczem w postaci nieczynnych metabolitów (np. norfentanyl). Po 72 h 85% podanej dawki pojawia się w moczu i kałe w postaci nieaktywnych metabolitów, a tylko 8% jest wydalane z moczem w postaci niezmienionej [32].

POCHODNE FENTANYLU

Alfentanyl jest stosowany dożylnie podczas wprowadzania do znieczulenia ogólnego i jako składnik mieszaniny leków stosowanych w tym celu. W kardioanestezji podawany jest w dużych dawkach i wówczas stanowi on jedyny środek znieczulający [32]. Charakteryzuje się bardzo szybkim wywoływaniem i krótkim czasem trwania działania przeciwbólowego (3-krotnie krótszym niż fentanylu). Działa przeciwbólowo 40-krotnie silniej niż morfina. Alfentanyl może wywoływać silną depresję oddechową, która występuje przy jego stężeniu w surowicy wyższym niż 100–200 ng/ml oraz śpiączkę [3].

Sufentanyl i alfentanyl zsyntetyzowano w połowie lat 70. dwudziestego wieku. Obecnie są one powszechnie stosowane jako substancje zapewniające znieczulenie. Od 1993 roku remifentanyl stosuje się jako pomocniczy lek przeciwbólowy i jako jeden ze składowych środków podawanych w celu wprowadzenia do znieczulenia ogólnego [3]. Okres półtrwania remifentanylu podawanego w dawkach terapeutycznych wynosi 3–10 min, a aktywność opioidowa ustępuje w ciągu 5–10 min od zakończenia podawania. Remifentanyl jest przeznaczony wyłącznie do stosowania dożynnego. Musi być podawany w ciągłym wlewie za pomocą wykalibrowanej pompy infuzji [32].

W organizmie człowieka sufentanyl, alfentanyl oraz remifentanyl są intensywnie metabolizowane i tylko parę procent podanej dawki pierwotnej jest eliminowane z moczem w postaci niezmienionej. Metabolity pochodnych fentanylu (norsufentanyl, noralfentanyl) prawdopodobnie nie posiadają aktywności farmakologicznej.
PRZEGLĄD METOD STOSOWanych DO OZNAczANIA FENTANYLU I JEGO POCHODNYCH W MATERIALE BIOLOGICZnym

Jak wcześniejszej wspomniano, fentanyl i jego niektóre pochodne są powszechnie stosowane w anestezjologii. Niestety, fentanyl i jego analogi są także nadużywane w celach pozamedycznych jako środki zamienne lub zastępcze, szczególnie heroiny. Związki te mogą działać nawet kilkadziesiąt razy silniej niż heroina. Fentanyl, sprzedawane na rynku narkotykowym jako heroina, mogą być przyczyną zgonów osób zażywających narkotyki. Nadużywanie fentanyli oraz pojawienie się ich w nielegalnym obrocie przyczyniły się do rozwoju różnych metod do oznaczania tych substancji. Do najczęściej stosowanych metod analizy ilościowej fentanyli należą m.in. metody immunoenzymatyczne (ELISA) [35], radioimmunologiczne (RIA) [1, 17, 43], radioreceptorowe (RRA) [1], enzymatycznochemiluminescencyjne [8], nieradioimmunoenzymatyczne (EIAs) [21], a także chromatografia gazowa [1, 6, 7, 10, 13, 22, 30, 34, 36, 38, 39, 42, 43] i chromatografia cieczowa [4, 11, 14, 19, 24, 23, 26, 27, 31, 33].

Fentanyle występują w materiale biologicznym w niskich stężeniach rządu nanogramów na mililitr lub gram. Większość związków obecnych w materiale biologicznym w tak niskich stężeniach nie jest wykrywana za pomocą rutynowo stosowanych metod przesiewowych. Konieczne jest zatem stosowanie analizy celowanej na tę grupę związków. Większość z opracowanych dotychczas procedur oznaczania fentanyli opiera się na technikach chromatograficznych. W tabeli III zestawiono metody oznaczania fentanylu i jego pochodnych.

PODSUMOWANIE

Fentanyl i jego pochodne są potocznie nazywane syntetycznymi opiatami. Związki te charakteryzują się bardzo silnym i szybkim czasem wystąpienia działania przeciwbólowego. Stosowane są jako środki znieczulające, szczególnie w anestezjologii. Niestety bywają one coraz częściej nadużywane jako środki odurzające, szczególnie jako substytuty heroiny. Oznaczanie fentanylu i jego analogów w płynach ustrojowych i tkankach jest ważnym zagadnieniem zarówno dla potrzeb toxskologii klinicznej, jak i sądowej. Omówienie farmakologii i toxskologii znanych już analogów fentanylu może być pomocne w badaniu właściwości i identyfikacji nowych pochodnych fentanylu.